Skip to content

Home

ping()

GET: /ping

Endpoint to check if the server is running.

Returns:

Name Type Description
Response

Response with status 200 if the server is running.

Source code in app.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
@app.get("/ping")
def ping():
    """
    # GET: /ping

    Endpoint to check if the server is running.

    Returns:
        Response: Response with status 200 if the server is running.
    """
    try:
        _ = grpcclient.InferenceServerClient(url=config.grcp_model_server_address, verbose=False)
        return Response(status_code=200)
    except Exception:
        return Response(status_code=400)

predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image and send it to the inference server.

Headers

Input-Location: Location of the image in the GCS bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used for logging and tracking. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- threshold: Threshold to apply to the output of the model. Default is 0.25.

- slice_idx: list of slice indices to run, e.g [45, 46, 47, ...]

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
@app.post("/bucket_invocations")
def predict_bucket(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image in the GCS bucket.
        *Webhook-Url*: URL to send the results of the inference.
        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.
        *Input-Bucket-Name*: Name of the input bucket.
        *Output-Bucket-Name*: Name of the output bucket.
        *Examination-ID*: ID of the examination, used for logging and tracking.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys

            - threshold: Threshold to apply to the output of the model. Default is 0.25.

            - slice_idx: list of slice indices to run, e.g [45, 46, 47, ...]

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """

    webhook_response = _check_webhook(webhook_url, examination_id=examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )
    if inference_parameters is None:
        inference_parameters = "{'threshold': 0.25}"
    inference_parameters = inference_parameters.replace("'", '"')
    inference_params = json.loads(inference_parameters)

    slice_idx = None
    if "slice_idx" in inference_params.keys():
        slice_idx = inference_params["slice_idx"]
        # add a lead 0
        slice_idx = [f"{i:03d}" for i in slice_idx]
        del inference_params["slice_idx"]

    images = read_from_gcp_bucket(input_bucket_to_use, input_location, slice_idx=slice_idx)

    try:
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            write_to_gcs,
            examination_id,
        )

        return JSONResponse(
            content={
                "filename": response["filename"],
                "request_uuid": response["request_uuid"],
                "result_path": response["result_path"],
                "examination_id": examination_id,
                "status": "sent",
            },
            status_code=200,
        )

    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_bucket_azure_uae(input_location=Header(None), webhook_url=Header(None), inference_parameters=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations_azure_uae

Endpoint to process images from Microsoft Azure Blob Storage (UAE).

Headers

Input-Location: Location of the image in the bucket. Examination-ID: ID of the examination, used for logging and tracking. Webhook-Url: URL to send the results of the inference. Input-Bucket-Name: Name of the input GCS bucket. Default is the bucket name in the config file. Output-Bucket-Name: Name of the output GCS bucket. Default is the bucket name in the config file. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- threshold: Threshold to apply to the output of the model. Default is 0.25.

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
@app.post("/bucket_invocations_azure_uae")
def predict_bucket_azure_uae(
    input_location: str = Header(None),
    webhook_url: str = Header(None),
    inference_parameters: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations_azure_uae

    Endpoint to process images from Microsoft Azure Blob Storage (UAE).

    Headers:
        *Input-Location*: Location of the image in the bucket.
        *Examination-ID*: ID of the examination, used for logging and tracking.
        *Webhook-Url*: URL to send the results of the inference.
        *Input-Bucket-Name*: Name of the input GCS bucket. Default is the bucket name in the config file.
        *Output-Bucket-Name*: Name of the output GCS bucket. Default is the bucket name in the config file.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys


            - threshold: Threshold to apply to the output of the model. Default is 0.25.

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """
    webhook_response = _check_webhook(webhook_url, examination_id=examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.azure_uae_input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name
        if output_bucket_name is not None
        else config.azure_uae_output_bucket_name
    )

    images = _read_from_azure_blob(
        input_bucket_to_use,
        input_location,
    )

    if not images:
        return JSONResponse(content={"error": "No images found"}, status_code=400)

    try:
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            write_to_gcs,
            examination_id,
        )

        return JSONResponse(
            content={
                "filename": response["filename"],
                "request_uuid": response["request_uuid"],
                "result_path": response["result_path"],
                "examination_id": examination_id,
                "status": "sent",
            },
            status_code=200,
        )

    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))

POST: /invocations

Endpoint to process an image and send it to the inference server.

Parameters:

Name Type Description Default
image UploadFile

Image file to process (in the request body).

File(...)
Headers

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- threshold: Threshold to apply to the output of the model. Default is 0.25.

Content-Type: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg". Webhook-URL: URL to send the results of the inference. Examination-ID: ID of the examination, used for logging and tracking.

Returns:

Type Description

JSON with the results of the inference:

  • filename: Name of the file that was processed.
  • status: Status of the request. Can be "sent" or "error".
  • request_uuid: UUID of the request, generated by the server. Used to track the request results.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
@app.post("/invocations")
def predict_image(
    image: UploadFile = File(...),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /invocations

    Endpoint to process an image and send it to the inference server.

    Args:
        image (UploadFile): Image file to process (in the request body).

    Headers:
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - threshold: Threshold to apply to the output of the model. Default is 0.25.

        *Content-Type*: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg".
        *Webhook-URL*: URL to send the results of the inference.
        *Examination-ID*: ID of the examination, used for logging and tracking.

    Returns:
        JSON with the results of the inference:
        - filename: Name of the file that was processed.
        - status: Status of the request. Can be "sent" or "error".
        - request_uuid: UUID of the request, generated by the server. Used to track the request results.

    Raises:
        Response: Error response if the content type is not supported.
    """

    client = grpcclient.InferenceServerClient(
        url=config.grcp_model_server_address,
        verbose=False,
        channel_args=(("grpc.lb_policy_name", "round_robin"),),
    )  # , concurrency=1, connection_timeout=10)
    model_config = client.get_model_config(
        model_name=config.model_name, model_version=config.model_version, as_json=True
    )["config"]

    content_type = image.content_type

    webhook_response = _check_webhook(webhook_url, examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    if content_type not in config.available_content_types:
        return Response(
            status=415,
            content="Cannot decode image data. Is content_type correct?",
            media_type="text/plain",
        )

    try:
        contents = image.file.read()

        image_bytes = np.frombuffer(contents, dtype=np.uint8)

        img = cv2.imdecode(image_bytes, cv2.IMREAD_GRAYSCALE)

        img = img.astype(np.uint8)
        img = img[np.newaxis, ...]

        inputs = [
            grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
            grpcclient.InferInput("INPUT_JSON_PARAMS", (1, 1), "BYTES"),
        ]
        inputs[0].set_data_from_numpy(img)
        inference_params = inference_parameters.replace("'", '"')
        inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

        outputs = [
            grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
            for i in range(len(model_config["output"]))
        ]

        request_uuid = str(uuid.uuid4())

        _ = client.async_infer(
            model_name=config.model_name,
            model_version=config.model_version,
            inputs=inputs,
            outputs=outputs,
            callback=partial(
                result_callback,
                model_config=model_config,
                filename=image.filename,
                request_uuid=request_uuid,
                client=client,
                webhook_url=webhook_url,
                image_resolution=(img.shape[1], img.shape[2]),
                examination_id=examination_id,
            ),
        )

        return JSONResponse(
            content={
                "filename": image.filename,
                "status": "sent",
                "request_uuid": request_uuid,
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        return JSONResponse(
            content={"message": str(e), "status": "error", "examination_id": examination_id},
            status_code=400,
        )

read_from_gcp_bucket(input_bucket, prefix, slice_idx=None)

Function to read images from a GCP bucket.

Parameters:

Name Type Description Default
prefix str

Prefix to search for images in the bucket.

required

Returns:

Name Type Description
List Tuple[str, ndarray]

List of images read from the bucket.

Source code in app.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def read_from_gcp_bucket(
    input_bucket: str, prefix: str, slice_idx: List[int] = None
) -> Tuple[str, np.ndarray]:
    """
    Function to read images from a GCP bucket.

    Args:
        prefix (str): Prefix to search for images in the bucket.

    Returns:
        List: List of images read from the bucket.
    """

    # make client
    client = storage.Client()

    # get bucket
    bucket = client.bucket(input_bucket)

    # get blobs
    blobs = []

    if slice_idx is not None:
        for idx in slice_idx:
            name = f"{prefix}/file.{idx}"
            blob = bucket.list_blobs(prefix=name)
            blobs.extend(blob)
    else:
        blobs = bucket.list_blobs(prefix=prefix)

    images = []
    for blob in blobs:
        # read image
        try:
            image = cv2.imdecode(
                np.frombuffer(blob.download_as_string(), dtype=np.uint8), cv2.IMREAD_GRAYSCALE
            )
            images.append((blob.name, image))
        except Exception as e:
            log_message = json.dumps(
                {
                    "status": "ERROR",
                    "message": f"Failed to read image {blob.name} from GCP bucket {input_bucket}: {str(e)}",
                }
            )
            logger.error(log_message)
            continue

    return images

result_callback(model_config, filename, request_uuid, result, error, client, webhook_url, image_resolution, examination_id)

Callback function to process the result of the inference request. Sends a webhook action to the callback service.

Parameters:

Name Type Description Default
model_config dict

Model configuration dictionary.

required
filename str

Name of the file that was processed.

required
result list

List of output tensors.

required
error Exception

Error that occurred during the request.

required
request_uuid str

UUID of the request.

required
client object

Triton client object.

required
webhook_url str

URL of the webhook service.

required
image_resolution Tuple[int, int]

Resolution of the input image.

required
examination_id str

ID of the examination, used for logging and tracking.

required
Source code in app.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def result_callback(
    model_config: dict,
    filename: str,
    request_uuid: str,
    result: Optional[list],
    error: Optional[Exception],
    client: object,
    webhook_url: str,
    image_resolution: Tuple[int, int],
    examination_id: str,
) -> None:
    """
    Callback function to process the result of the inference request.
    Sends a webhook action to the callback service.

    Args:
        model_config (dict): Model configuration dictionary.
        filename (str): Name of the file that was processed.
        result (list): List of output tensors.
        error (Exception): Error that occurred during the request.
        request_uuid (str): UUID of the request.
        client (object): Triton client object.
        webhook_url (str): URL of the webhook service.
        image_resolution (Tuple[int, int]): Resolution of the input image.
        examination_id (str): ID of the examination, used for logging and tracking.
    """

    if error is None:
        output_data = get_output_data_from_response(result, model_config)

        formed_output = {
            "metadata": {
                "height": image_resolution[0],
                "width": image_resolution[1],
            },
            "instances": [
                {
                    "type": "polyline",
                    "points": output_data,
                    "className": "ilm",
                    "classId": 14,
                    "probability": 100,
                    "attributes": [],
                }
            ],
        }

        status_message = {
            "id": request_uuid,
            "status": "COMPLETED",
            "output": formed_output,
            "filename": filename,
        }

        response = requests.post(webhook_url, json=status_message)

        if response.status_code == 200:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "COMPLETED",
                    "filename": filename,
                    "request_uuid": request_uuid,
                }
            )

            logger.info(log_message)
        else:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "ERROR",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": f"Error sending webhook action for {filename, request_uuid}",
                }
            )
            logger.error(log_message)
    else:
        status_message = {
            "id": request_uuid,
            "status": "FAILED",
            "error": str(error),
            "filename": filename,
        }
        response = requests.post(webhook_url, json=status_message)

        if response.status_code == 200:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "FAILED",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": str(error),
                }
            )
            logger.error(log_message)
        else:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "ERROR",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": f"Error sending webhook action for {filename, request_uuid}",
                }
            )
            logger.error(log_message)

    client.close()

result_image_bucket_callback(model_config, filename, result, error, client, request_uuid, webhook_url, output_bucket_name, examination_id, write_to_gcs=False, image_resolution=None)

Callback function to process the result of the inference request. Writes the result to a GCS bucket.

Parameters:

Name Type Description Default
model_config dict

Model configuration dictionary.

required
filename str

Name of the file that was processed.

required
result list

List of output tensors.

required
error Exception

Error that occurred during the request.

required
request_uuid str

UUID of the request.

required
client object

Triton client object.

required
webhook_url str

URL of the webhook service.

required
write_to_gcs bool

Flag to write the result to a GCS bucket.

False
output_bucket_name str

Name of the output bucket.

required
image_resolution Tuple[int, int]

Resolution of the input image.

None
examination_id str

ID of the examination, used for logging and tracking.

required
Source code in app.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def result_image_bucket_callback(
    model_config: dict,
    filename: str,
    result: Optional[list],
    error: Optional[Exception],
    client: object,
    request_uuid: str,
    webhook_url: str,
    output_bucket_name: str,
    examination_id: str,
    write_to_gcs: bool = False,
    image_resolution: Tuple[int, int] = None,
) -> None:
    """
    Callback function to process the result of the inference request.
    Writes the result to a GCS bucket.

    Args:
        model_config (dict): Model configuration dictionary.
        filename (str): Name of the file that was processed.
        result (list): List of output tensors.
        error (Exception): Error that occurred during the request.
        request_uuid (str): UUID of the request.
        client (object): Triton client object.
        webhook_url (str): URL of the webhook service.
        write_to_gcs (bool): Flag to write the result to a GCS bucket.
        output_bucket_name (str): Name of the output bucket.
        image_resolution (Tuple[int, int]): Resolution of the input image.
        examination_id (str): ID of the examination, used for logging and tracking.
    """
    if error is None:
        output_data = get_output_data_from_response(result, model_config)

        formed_output = {
            "metadata": {
                "height": image_resolution[0],
                "width": image_resolution[1],
            },
            "instances": [
                {
                    "type": "polyline",
                    "points": output_data,
                    "className": "ilm",
                    "classId": 14,
                    "probability": 100,
                    "attributes": [],
                }
            ],
        }

        status_message = {
            "id": request_uuid,
            "status": "COMPLETED",
            "output": formed_output,
            "filename": filename,
        }
    else:
        output_data = {"error": str(error)}
        status_message = {
            "id": request_uuid,
            "status": "FAILED",
            "error": str(error),
            "filename": filename,
        }

    if write_to_gcs:
        write_json_to_gcs(
            output_bucket_name, output_data, f"{config.output_folder_name}/{request_uuid}.json"
        )

    client.close()

    response = requests.post(webhook_url, json=status_message)

    if response.status_code == 200:
        log_message = json.dumps(
            {
                "model": model_config["name"],
                "examination_id": examination_id,
                "status": "COMPLETED" if error is None else "FAILED",
                "filename": filename,
                "request_uuid": request_uuid,
            }
        )
        logger.info(log_message)
    else:
        log_message = json.dumps(
            {
                "model": model_config["name"],
                "examination_id": examination_id,
                "status": "ERROR",
                "filename": filename,
                "request_uuid": request_uuid,
                "error": f"Error sending webhook action for {filename, request_uuid}",
            }
        )
        logger.error(log_message)

write_json_to_gcs(bucket_name, json_data, output_path)

Write JSON data to a specific folder in a GCS bucket.

Parameters:

Name Type Description Default
bucket_name str

The name of the GCS bucket.

required
json_data dict

The JSON data to be written.

required
output_path str

The GCS path where the JSON file will be stored (e.g., 'folder/output_file.json').

required
Source code in app.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
def write_json_to_gcs(bucket_name: str, json_data: dict, output_path: str):
    """
    Write JSON data to a specific folder in a GCS bucket.

    Args:
        bucket_name (str): The name of the GCS bucket.
        json_data (dict): The JSON data to be written.
        output_path (str): The GCS path where the JSON file will be stored (e.g., 'folder/output_file.json').
    """
    # Convert the JSON data to a string
    json_str = json.dumps(json_data, indent=4)

    # Run the blocking GCS code in a thread pool
    _upload_to_gcs(json_str, bucket_name, output_path)
    log_message = json.dumps(
        {
            "model": config.model_name,
            "status": "COMPLETED",
            "filename": output_path,
        }
    )
    logger.info(log_message)